首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   21篇
  国内免费   22篇
化学   88篇
晶体学   2篇
力学   34篇
数学   7篇
物理学   111篇
  2023年   1篇
  2022年   6篇
  2021年   5篇
  2020年   10篇
  2019年   5篇
  2018年   3篇
  2017年   14篇
  2016年   22篇
  2015年   30篇
  2014年   12篇
  2013年   9篇
  2012年   13篇
  2011年   21篇
  2010年   12篇
  2009年   9篇
  2008年   6篇
  2007年   4篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2003年   9篇
  2002年   6篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1991年   2篇
  1990年   1篇
  1986年   2篇
排序方式: 共有242条查询结果,搜索用时 375 毫秒
41.
The creep behavior of PMMA immersed in liquid scintillator at room temperature was experimentally studied with a new type of creep test machine. Both short-term and creep-rupture tensile tests at eight stress levels were performed. A master curve of creep compliance at a reference stress was obtained according to the Time-Stress Superposition Principle. The master curve was compared with the actual long-term creep curve. It demonstrates that the two curves coincide well at short times. However, the actual creep data shows a higher creep rate as time goes on. The actual lifetime is much shorter than that predicted by the master curve. Furthermore, the relationship between long-term creep limited strength and service life was determined. The results can be used to guide the safety design of PMMA vessels for application in a neutrino observatory.  相似文献   
42.
The electronic properties of SiC nanotubes (SiCNTs) under external transverse electric field were investigated using density functional theory. The pristine SiCNTs were semiconductors with band-gaps of 2.03, 2.17 and 2.25 eV for (6,6), (8,8) and (10,10) SiCNTs, respectively. It was found the band gaps was reduced with the external transverse electric filed applied. The (8,8) and (10,10) SiCNTs changed from semiconductor to metals as the intensity of electric field reached 0.7 and 0.5 V/Å. The results indicate that the electronic properties of SiCNTs can be tuned by the transvers electric field with integrality of the nanotubes.  相似文献   
43.
Two kinds of ferromagnetic SiC based nanowires with and without Ni catalyst were successfully synthesized by employing microwave heating method. The comprehensive characterizations and vibrating sample magnetometer (VSM) have been applied to investigate the micro-structures and magnetic properties of as-grown nanowires. For the nanowires synthesized without using Ni catalyst, the diameters and lengths are in the range of 20–60 nm and dozens of micrometers, respectively. Particularly, the results of transmission electron microscopy (TEM) show that the nanowires consist of SiC core and SiOx shell. The SiC/SiOx coaxial nanowires exhibit room-temperature ferromagnetism with saturation magnetization (Ms) of 0.2 emu/g. As to the nanowires obtained using Ni catalyst, the scanning electron microscopy (SEM) results indicate that the Ni catalyzed nanowires have a nano-particle attached on the tip and a uniform diameter of approximately 50 nm. The vapor-liquid-solid (VLS) growth mechanism can be used to explain the formation of the Ni catalyzed nanowires. The detection result of VSM indicates that the Ni catalyzed nanowires possess the paramagnetism and the ferromagnetism, simultaneously. The enhancement of the ferromagnetism, compared with the SiC/SiOx coaxial nanowires, could be attributed to the Ni2Si and NiSi phases.  相似文献   
44.
弭光宝  黄旭  曹京霞  王宝  曹春晓 《物理学报》2016,65(5):56103-056103
采用摩擦氧浓度实验方法, 结合原位观察、扫描电镜、能谱仪和X-射线衍射分析, 系统研究Ti-V-Cr 阻燃钛合金燃烧产物的微观组织形貌、燃烧反应过程的合金元素分布规律及微观机理. 结果表明: Ti-V-Cr 阻燃钛合金燃烧过程发出闪亮耀眼的白光, 具有典型金属燃烧的火焰特征. 燃烧产物主要有TiO2, V2O5和Cr2O3三种氧化物, 该混合氧化物以分散颗粒和致密连续体存在. 分散颗粒为规则的球形; 致密连续燃烧产物的微观组织具有分区特征, 从合金基体至燃烧表面依次为过渡区、热影响区、熔凝区和燃烧区. 其中, 过渡区存在一些微小的颗粒状凸起, 且有一定方向性; 热影响区中形成大量V基固溶体相和少量的Ti基固溶体相, V基固溶体相上存在Ti的含量远高于基体的针状析出物; 熔凝区中, 大量的Ti基固溶体中存在少量的V基固溶体; 燃烧区主要为Ti, V和Cr的氧化物混合物. 热影响区的V基固溶体相降低了Ti元素向熔凝区的迁移速率, 减慢了燃烧区Ti与O的优先反应; 燃烧区形成的TiO2, V2O5和Cr2O3混合氧化物和熔凝区O在Ti中大量固溶共同终止了O向合金基体的继续扩散, 从而使Ti-V-Cr阻燃钛合金表现出优异的阻燃功能性.  相似文献   
45.
The electron gun plays an important role in atomic, molecular, and surface physics. Different types of electron guns have been designed for producing different electron beam energies. In this study, we present the modeling and construction of a seven-element electron gun with deflector system for electron impact studies. The electron optics of the electron gun was simulated and optimized using electron-beam ray-tracing simulation program SIMION 3D 7.0. Different operation mode of the gun, afocal, broad, and zoom beam mode, can be accommodated by adjusting various potentials. This modeling proposed here may help to design new types of electron guns and applications using cylinder and aperture lenses in collision experiments.  相似文献   
46.
The three-dimensional weight function method recently developed by the authors is used to determine stress intensity factors for two symmetric quarter-elliptical corner cracks at a hole in a wide finite-thickness plate subjected to remote tensile loading. The geometry parameters considered arer/t=0.5, 1, 2;a/c=0.2, 0.5, 1, 2;a/t=0.2, 0.5 withinc/r=2. The results are compared, where possible, with other solutions available in the literature. Generally good agreement is observed. The effect of an approximation of the two-dimensional unflawed stress distribution on the accuracy of stress intensity factors by the weight function method is discussed.  相似文献   
47.
The mechanical behavior of granular materials such as sand is not well understood due to its complex solid/fluid-like behavior. In this paper, Mason sand was investigated to determine the grain-level Young’s modulus and hardness by nanoindentation, and the mesoscale behavior through X-ray tomography of a sample in compression. Mason sand specimen was confined in a polycarbonate tube and compressed in the axial direction at ten axial compressive strains up to -21.8 % while its microstructures were observed. The mesoscale deformations were determined by incremental digital volume correlation of reconstructed volumetric images. A procedure for characterization of internal force chains is developed. The minor principal strains and their principal directions were obtained and used to determine the formation and evolution of force chains.  相似文献   
48.
A new framework for development of order 3.0 weak Taylor scheme towards stochastic modeling and dynamics of coupled nonlinear systems is presented. The proposed method is derived by including third order multiple stochastic integral terms of Ito–Taylor expansion and developing them for a wide class of stochastic nonlinear systems. For computing the system responses of linear and a wide class of nonlinear structural systems, the use of lower order integration schemes is sufficient. But for highly non-linear stochastically driven systems like base isolated hysteretic systems and degrading stochastic systems the evaluation of higher order terms is necessary. Additionally, the use of higher order integration schemes for stochastic dynamics of higher dimensional nonlinear systems remains a challenge due to the arising mathematical complexities with the increase in the number of DOFs (degrees-of-freedom) which really necessitates the development of the proposed algorithm. The proposed algorithm is verified using a representative class of coupled nonlinear system in presence and absence of nonlinear degradation and hysteretic oscillators. The efficiency of the proposed numerical scheme over classical integration schemes is demonstrated through a practical engineering problem. Finally, an automated extension of the proposed algorithm is presented by generalizing it for a system of N-DOFs.  相似文献   
49.
Three-terminal nanojunctions based on triangle zigzag edged graphene flakes are proposed and their transport properties are studied. In the solid and hollow triangle graphene junctions, there exist different resonant transmissions due to the different electronic states in the two structures. The quasi-bound states in the solid junction are confined in the inner of the triangle flake, while those in the hollow junction are confined at the zigzag edges. In addition, these states are tightly associated with the size of the triangle flake, thus the resonant transmissions in the triangle graphene junctions can be tuned by the structural size and geometry.  相似文献   
50.
Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La2(Zr0.7Ce0.3)2O7 (LZ7C3) and La2Ce2O7 (LC) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, interdiffusion, surface and cross-sectional morphologies, cyclic oxidation behavior of DCL coating were studied. Energy dispersive spectroscopy and X-ray diffraction analyses indicate that both LZ7C3 and LC coatings are effectively fabricated by a single LZ7C3 ingot with properly controlling the deposition energy. The chemical compatibility of LC coating and thermally grown oxide (TGO) layer is unstable. LaAlO3 is formed due to the chemical reaction between LC and Al2O3 which is the main composition of TGO layer. Additionally, the thermal cycling behavior of DCL coating is influenced by the interdiffusion of Zr and Ce between LZ7C3 and LC coatings. The failure of DCL coating is a result of the sintering of LZ7C3 coating surface, the chemical incompatibility of LC coating and TGO layer and the abnormal oxidation of bond coat. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL coating is an important development direction of TBCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号